May 13, 2013

* Model 6 Simple Farm Management
* Expands scope and scale of Model 5
* 2 to 13 provinces
* 2 to 3 water supply scenarios
* 2 to 4 water shortage sharing methods
* 2 to 9 crops
* model 6, adds 13 provinces and 9 crops and 4 water sharing arrangements

*** Section 1 ***
* Sets *
SETS

i province

/ 1-Mousil
 2-Kurkuk
 3-Salaheldeen
 4-Deyala
 5-Anbar
 6-Baghdad
 7-Babylon
 8-Karbala
 9-Qadeseeya
 10-Muthana
 11-Thieqar
 12-Meesan
 13-Basra
/

k crop

/ 1-Rice
 2-Wheat
 3-Cotton
 4-Sunflower
 5-Maize
 6-Barley
 7-Tomato
 8-Lettuce
 9-Onion
/

s hydrologic water supply scenario

/ 1-normal
2-dry
3-drought/

j water right priority: water right priority: same number # of elements as # of provinces - 1 priority per province

/ j1*j13 /

set r water allocation rule allows for many water shortage sharing rules to be considered

/l-ds_priority downstream priority // rule 1
2-us_priority upstream priority // rule 2
3-prop_sharing proportional sharing of shortages // rule 3
4-free_market free market - proportional sharing then water moves by market // rule 4
/

*subsets of r

set rwa(r) / l-ds_priority, 2-us_priority, 3-prop_sharing/ // subset of rules = everything except market trading
set rfm(r) / 4-free_market/ // subset of rules = only market trading of water in drought

Set rji(r, j, i) mapping set: assigns priorities to province - separate assignments for each proposed rule

// best (senior) right assigned to canal with j1 priority - worst (junior) priority assigned to canal with j4
// Two canals with equal priority (e.g. two both with j1) share shortages proportionally

/l-ds_priority . (j1.13-Basra, j2.12-Meesan, j3.11-Thieqar, j4.10-Muthana, j5.9-Qadesseya, j6.8-Karbala, j7.7-Babylon, j8.6-
Baghdad, j9.5-Anbar, j10.4-Deyala, j11.3-Salaheldeen, j12.2-Kurkuk, j13.1-Mousil)
2-us_priority . (j1.1-Mousil, j2.2-Kurkuk, j3.3-Salaheldeen, j4.4-Deyala, j5.5-Anbar, j6.6-Baghdad, j7.7-Babylon, j8.8-
3-prop_sharing . j1. (1-Mousil, 2-Kurkuk, 3-Salaheldeen, 4-Deyala, 5-Anbar, 6-Baghdad, 7-Babylon, 8-Karbala, 9-Qadesseya, 10-
Muthana, 11-Thieqar, 12-Meesan, 13-Basra)
4-free_market . j1. (1-Mousil, 2-Kurkuk, 3-Salaheldeen, 4-Deyala, 5-Anbar, 6-Baghdad, 7-Babylon, 8-Karbala, 9-Qadesseya, 10-
Muthana, 11-Thieqar, 12-Meesan, 13-Basra)
/

** Section 2 **

* Data

**
TABLE
Bc(i, k)
ET - Per hectare crop water demand 10ths of meters depth = 1000s cubic meters per ha.

* ----- Column Heads are Crops -- Row heads are irrigation canals (water use areas) ----- *

<table>
<thead>
<tr>
<th>Rice</th>
<th>Wheat</th>
<th>Cotton</th>
<th>Sunflower</th>
<th>Maize</th>
<th>Barley</th>
<th>Tomato</th>
<th>Lettuce</th>
<th>Onion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Mousil</td>
<td>30.8</td>
<td>11.9</td>
<td>18.0</td>
<td>12.9</td>
<td>7.0</td>
<td>2.8</td>
<td>7.1</td>
<td>1.7</td>
</tr>
<tr>
<td>2-Kurkuk</td>
<td>32.4</td>
<td>12.3</td>
<td>19.1</td>
<td>13.4</td>
<td>7.8</td>
<td>2.6</td>
<td>7.9</td>
<td>1.6</td>
</tr>
<tr>
<td>3-Salaheldeen</td>
<td>28.4</td>
<td>9.9</td>
<td>16.6</td>
<td>10.9</td>
<td>6.8</td>
<td>2.5</td>
<td>6.9</td>
<td>1.6</td>
</tr>
<tr>
<td>4-Deyala</td>
<td>29.6</td>
<td>10.8</td>
<td>17.3</td>
<td>11.8</td>
<td>6.6</td>
<td>3.1</td>
<td>6.7</td>
<td>2.4</td>
</tr>
<tr>
<td>5-Anbar</td>
<td>33.8</td>
<td>12.4</td>
<td>19.7</td>
<td>13.6</td>
<td>8.8</td>
<td>3.1</td>
<td>8.8</td>
<td>1.9</td>
</tr>
<tr>
<td>6-Baghdad</td>
<td>32.2</td>
<td>11.8</td>
<td>18.8</td>
<td>13.0</td>
<td>8.2</td>
<td>2.8</td>
<td>8.2</td>
<td>1.7</td>
</tr>
<tr>
<td>7-Babylon</td>
<td>32.5</td>
<td>11.9</td>
<td>18.6</td>
<td>13.0</td>
<td>8.2</td>
<td>3.0</td>
<td>8.2</td>
<td>1.8</td>
</tr>
<tr>
<td>8-Karbala</td>
<td>32.8</td>
<td>11.9</td>
<td>18.8</td>
<td>13.1</td>
<td>8.6</td>
<td>3.1</td>
<td>8.6</td>
<td>1.9</td>
</tr>
<tr>
<td>9-Qadeseeya</td>
<td>34.2</td>
<td>12.3</td>
<td>19.6</td>
<td>13.6</td>
<td>9.2</td>
<td>3.4</td>
<td>9.2</td>
<td>2.0</td>
</tr>
<tr>
<td>10-Muthana</td>
<td>34.4</td>
<td>12.3</td>
<td>19.6</td>
<td>13.5</td>
<td>9.3</td>
<td>3.6</td>
<td>9.3</td>
<td>2.1</td>
</tr>
<tr>
<td>11-Thieqar</td>
<td>35.6</td>
<td>12.8</td>
<td>20.3</td>
<td>14.1</td>
<td>9.0</td>
<td>3.0</td>
<td>9.1</td>
<td>1.9</td>
</tr>
<tr>
<td>12-Meesan</td>
<td>34.8</td>
<td>12.5</td>
<td>20.1</td>
<td>13.8</td>
<td>9.2</td>
<td>3.4</td>
<td>9.2</td>
<td>2.1</td>
</tr>
<tr>
<td>13-Basra</td>
<td>37.2</td>
<td>13.4</td>
<td>21.4</td>
<td>14.9</td>
<td>9.7</td>
<td>3.4</td>
<td>9.8</td>
<td>2.1</td>
</tr>
</tbody>
</table>

*Bc(k) = 0.5 * Bc(k)*

<table>
<thead>
<tr>
<th>Yield p(i,k)</th>
<th>Crop Yield tons per Ha (proportional to ET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>Wheat</td>
</tr>
<tr>
<td>1-Mousil</td>
<td>2.89</td>
</tr>
<tr>
<td>2-Kurkuk</td>
<td>2.89</td>
</tr>
<tr>
<td>3-Salaheldeen</td>
<td>2.89</td>
</tr>
<tr>
<td>4-Deyala</td>
<td>2.89</td>
</tr>
<tr>
<td>5-Anbar</td>
<td>2.89</td>
</tr>
<tr>
<td>6-Baghdad</td>
<td>2.89</td>
</tr>
<tr>
<td>7-Babylon</td>
<td>2.89</td>
</tr>
<tr>
<td>8-Karbala</td>
<td>2.89</td>
</tr>
<tr>
<td>9-Qadeseeya</td>
<td>2.89</td>
</tr>
<tr>
<td>10-Muthana</td>
<td>2.89</td>
</tr>
</tbody>
</table>
Yield_p(i,k) = yield_p ('6-baghdad',k) * Bc(i, k)/ Bc('6-baghdad', k) ;

* economic data

Parameter Price_p(k) Crop Prices ($ US per ton)

/1-Rice 985
2-wheat 225
3-cotton 906
4-sunflower 415
5-Maize 180
6- Barley 175
7-tomato 115
8-lettuce 120
9-onion 142
/

Table Cost_p(i,k) Crop Production Costs Excluding water ($ US per Ha)

1-Mousil 180 200 1300 220 70 100 60 80 70 70
2-Kurkuk 180 200 1300 220 70 100 60 80 70 70
3-Salaheldeen 180 200 1300 220 70 100 60 80 70 70
4-Deyala 180 200 1300 220 70 100 60 80 70 70
5-Anbar 180 200 1300 220 70 100 60 80 70 70
6-Baghdad 180 200 1300 220 70 100 60 80 70 70
7-Babylon 180 200 1300 220 70 100 60 80 70 70
8-Karbala 180 200 1300 220 70 100 60 80 70 70
9-Qadesseeya 180 200 1300 220 70 100 60 80 70 70
10-Muthana 180 200 1300 220 70 100 60 80 70
11-Thieqar 180 200 1300 220 70 100 60 80 70
12-Meesan 180 200 1300 220 70 100 60 80 70
13-Basra 180 200 1300 220 70 100 60 80 70

--

1/4 of all costs relate to yield, and 3/4 are independent of yield

parameter cost_harvest_p(i,k) production costs per ha related to crop yield

\[
\text{cost}_\text{harvest}_p(i,k) = 0.25 \times \text{cost}_p(i,k); \quad \text{// harvest-related costs approx 25% of all prodn costs - data source needed}
\]

\[
\text{cost}_\text{harvest}_p(i,k) = \text{cost}_\text{harvest}_p(\text{'6-Baghdad'}, k) \times \text{yield}_p(i,k) / \text{yield}_p(\text{'6-baghdad'}, k); \quad \text{// costs related to harvests}
\]

parameter cost_n_harvest_p(i,k) costs not related to (independent of) harvest;

\[
\text{cost}_n\text{harvest}_p(i,k) = 0.75 \times \text{cost}_p(i,k) \quad \text{// higher total prodn costs with higher yields. Baghdad is reference value}
\]

* re assemble cost below. For any given crop we have (1) rising costs with higher yields and (2) constant costs over provinces

parameter cost_p(i,k) total cost per ha;

\[
\text{Cost}_p(i,k) = \text{Cost}_\text{harvest}_p(i,k) + \text{cost}_n\text{harvest}_p(i,k);
\]

Table land_p(i, k) observed land in prodn (1000 Ha)

<table>
<thead>
<tr>
<th></th>
<th>1-Rice</th>
<th>2-wheat</th>
<th>3-cotton</th>
<th>4-sunflower</th>
<th>5-Maize</th>
<th>6-Barley</th>
<th>7-tomato</th>
<th>8-lettuce</th>
<th>9-onion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Mousil</td>
<td>0.0</td>
<td>47.4</td>
<td>0.45</td>
<td>0.4</td>
<td>0.0</td>
<td>77.1</td>
<td>43.6</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2-Kurkuk</td>
<td>0.0</td>
<td>26.1</td>
<td>1.60</td>
<td>1.6</td>
<td>0.0</td>
<td>0.7</td>
<td>1.5</td>
<td>6.9</td>
<td>2.0</td>
</tr>
<tr>
<td>3-Salaheldeen</td>
<td>0.0</td>
<td>145.5</td>
<td>3.00</td>
<td>3.0</td>
<td>6.4</td>
<td>40.3</td>
<td>13.6</td>
<td>46.3</td>
<td>69.1</td>
</tr>
<tr>
<td>4-Deyala</td>
<td>0.6</td>
<td>107.1</td>
<td>1.40</td>
<td>1.4</td>
<td>0.3</td>
<td>10.3</td>
<td>22.2</td>
<td>17.7</td>
<td>12.9</td>
</tr>
<tr>
<td>5-Anbar</td>
<td>0.2</td>
<td>55.5</td>
<td>0.15</td>
<td>0.2</td>
<td>2.2</td>
<td>7.2</td>
<td>3.4</td>
<td>13.2</td>
<td>13.6</td>
</tr>
<tr>
<td>6-Baghdad</td>
<td>0.0</td>
<td>65.7</td>
<td>2.60</td>
<td>2.6</td>
<td>2.0</td>
<td>25.6</td>
<td>8.2</td>
<td>51.8</td>
<td>27.6</td>
</tr>
<tr>
<td>7-Babylon</td>
<td>1.6</td>
<td>74.2</td>
<td>1.00</td>
<td>1.0</td>
<td>0.6</td>
<td>73.0</td>
<td>44.4</td>
<td>15.6</td>
<td>15.3</td>
</tr>
<tr>
<td>8-Karbala</td>
<td>0.0</td>
<td>2.9</td>
<td>0.04</td>
<td>0.0</td>
<td>0.2</td>
<td>3.1</td>
<td>2.9</td>
<td>11.8</td>
<td>7.8</td>
</tr>
<tr>
<td>9-Qadeseyya</td>
<td>32.5</td>
<td>91.8</td>
<td>0.40</td>
<td>0.4</td>
<td>0.05</td>
<td>3.8</td>
<td>72.3</td>
<td>15.2</td>
<td>9.6</td>
</tr>
<tr>
<td>10-Muthana</td>
<td>4.5</td>
<td>12.8</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>29.1</td>
<td>1.6</td>
<td>0.7</td>
</tr>
<tr>
<td>11-Thieqar</td>
<td>0.1</td>
<td>61.3</td>
<td>0.05</td>
<td>0.0</td>
<td>0.03</td>
<td>3.4</td>
<td>81.5</td>
<td>16.7</td>
<td>11.1</td>
</tr>
</tbody>
</table>
Parameter Net_revenue_p (i,k) net revenue per ha observed
 T_net_revenue_p(i) total net revenue by province summed over crops
;
Net_revenue_p (i,k) = Price_p(k) * Yield_p(i,k) - Cost_p(i,k) + eps;

parameter Wat_supply_p(s) total water available (million cubic meters per year) calculated total ag water use (not meas from gauges)
;
Wat_supply_p('1-normal') = sum((i,k), Bc(i,k) * land_p(i,k)); // actual water use in full supply year
Wat_supply_p('2-dry') = 0.50 * Wat_supply_p('1-normal'); // 50% of full supply
Wat_supply_p('3-drought') = 0.20 * Wat_supply_p('1-normal'); // 20% of full supply

parameter right_p(i) total water assigned by province in full supply conditions (paper water)
;
right_p(i) = sum(k, Bc(i,k) * land_p(i,k));

*************** code defines water sharing methods ****************************

* code below loops over each priority (j) then maps each priority to corresponding province i
* code is thanks to Pete Stacy at GAMS Development Corporation Feb 1 2012

parameter tot_assigned(r,s) cumulative assignment at canal i including higher priorities;
tot_assigned(r,s) = 0; // starts at 0 - prepares to loop

parameter tot_pap_right_by_prior(r,j) total paper rights by jth priority for all canals including ties
remain_supply_by_prior(r,s,j) residual supply by jth priority after supplying higher priorities
wet_wat_use (r,s,i) wet water use assigned to ith limited by total basin supply
;
Loop(r, // loop over sharing rule (r)
 Loop(j, // loop over priority (j)
 tot_pap_right_by_prior(r,j) = sum[i$rji(r, j, i), right_p(i)]; // total paper rights by (j) after protecting higher priorities
 remain_supply_by_prior(r,s,j) = min((Wat_supply_p(s) - tot_assigned(r,s)), tot_pap_right_by_prior(r,j)) + eps; // remaining supply by jth priority after
*supplying higher priorities

Loop (i$rji(r, j, i),
 wet_wat_use(r,s,i) = (right_p(i)/tot_pap_right_by_prior(r,j))
 * remain_supply_by_prior(r,s,j) + eps; // wet water assigned to (i) province
 tot_assigned(r,s) = tot_assigned(r,s) + wet_wat_use(r,s,i) ; // cumulative water (check) assigned to last province
*getting water - should match total supply

); // end province loop
); // end priority loop
); // end rule loop

parameter tot_wat_use(r,s) total water use;
tot_wat_use (r,s) = sum(i, wet_wat_use(r,s,i)) + eps;

************** end of water allocation system **

**** begin looping over water sharing rule and water supply scenario below
* rr, ss, are subset of orginal sets... allows fast scenario analysis below

set rr(r); // water sharing rule
set ss(s); // water supply scenario

rr(r) = no; // switch rr subset off -- prepares to turn it on below in equations
ss(s) = no; // switch ss subset off -- prepares to turn it on below in equations

****************************** SECTION 3 ***
* Variables *

POSITIVE VARIABLES

hectares_v (r,s,i,k) land in production by rule-province-crop-scen (1000 Ha - marginal is $US per Ha)
T_hectares_v (r,s,i) total land in prodn by rule-province-scen (1000 Ha - marginal is $US per Ha)
Uses_v (r,s,i) total water use by rule-province-crop-scen (million m^3 - marginal is $US per 1000 m^3)
Uses_Crop_v (r,s,i,k) total water use by rule-province-scen (million m^3 - marginal is $US per 1000 m^3)
Sum_uses_v (r,s) summed wat uses over provinces by rule-scen (million m^3 - marginal is $US per 1000 m^3)

variables
Ag_Ben_k_v (r,s,i,k) total farm income by rule-scenario-province-crop ($US 1000s - no marginals shown)
Ag_Ben_v (r,s) total farm income by rule-scenario-province ($US 1000s - no marginals shown)

Tot_b_v total farm income re-calc for each rule-scen (objective) ($US 1000s - no marginals shown)

;******************************* Section 4 **
* Equations *

EQUATIONS

// Equations DECLARED

T_hectares_e (r,s,i) total land in production by province-scen (1000 Ha - marginal is $US per Ha)
Uses_crop_e (r,s,i,k) total water use by rule-scen-prov-crop (million m^3 - marginal is $US per 1000 m^3)
Uses_e (r,s,i) total water use by rule-scen-prov (million m^3 - marginal is $US per 1000 m^3)
Sum_uses_e (r,s) total water use by rule-scen (million cubic meters per year)
ag_ben_k_e (r,s,i, k) total farm income by rule-scen-prov-crop ($US 1000)
Ag_ben_e (r,s) total farm income by rule-scen-prov ($US 1000)

Tot_b_e total farm income by element of loop ($US 1000)

; // Equations defined (using above names with algebraic formulas)

// Equations below defined over rule (rr) and scenario (ss) using subset rr and ss

T_hectares_e(rr,ss,i).. T_hectares_v(rr,ss,i) =e= sum(k, hectares_v(rr,ss,i,k));
Uses_crop_e (rr,ss,i,k).. Uses_crop_v(rr,ss,i,k) =e= Bc(i,k) * hectares_v(rr,ss,i,k) ;
Uses_e (rr,ss,i).. Uses_v(rr,ss,i) =e= sum(k, Uses_crop_v(rr,ss,i,k));
sum_uses_e (rr,ss).. sum_uses_v(rr,ss) =e= sum(i, Uses_v(rr,ss,i));
ag_ben_k_e (rr,ss,i,k).. Ag_Ben_k_v (rr,ss,i,k) =e= Net_revenue_p(i,k) * hectares_v(rr,ss,i,k);
Ag_ben_e (rr,ss).. Ag_Ben_v (rr,ss) =e= sum((i,k), Ag_Ben_k_v(rr,ss,i,k));
Tot_b_e .. Tot_b_v =e= sum((rr,ss), ag_ben_v(rr,ss)); //sums total benefits over indices for each rule-scen

MODEL TE_06 /all/;

uses_v.up (rwa,s, i) = wet_wat_use(rwa,s,i); // without water trading water use limited to historic by province
sum_uses_v.up(rfm,s) = tot_wat_use(rfm,s); // with water trading only total (basin) water is bounded
hectares_v.up(r,s,i,k) = land_p(i,k); // can produce no more crops than observed under full water supply

parameter shad_price_p(r,s,i) shadow prices calculated below after each optimization
;

* prepare for multiple solves inside the loops

 loop(r,
 loop(s,
 ss(s) = yes;
 rr(r) = yes;
 Solve TE_06 using nlp maximizing Tot_b_v;

 shad_price_p(rwa,s,i) = uses_v.m(rwa,s,i) + eps; // shad prices for all water allocation rules ex trading
 shad_price_p(rfm,s,i) = sum_uses_v.m(rfm,s) + eps; // shad prices for trading - should be = across provinces

)
)

* closes loops below over r,s (rule for sharing water shortages, water supply scenario)
\[
rr(r) = \texttt{no}; \\
ss(s) = \texttt{no}; \\
\]

\[
\]

**
* Section 8: DISPLAYS *
**

* Parameters are calculated values from the optimal solution, first defined then found

\textbf{parameter}

\begin{align*}
tot_use_p & \quad (r,s,i,k) \quad \text{total water use by rule-scen-prov-crop} \\
uses_p & \quad (r,s,i) \quad \text{total water use by rule-scen_prov} \\
land_v_p & \quad (r,s,i,k) \quad \text{total land in production} \\
ben_by_crop_canal_p & \quad (r,s,i,k) \quad \text{total benefits by crop and province} \\
ben_by_canal_p & \quad (r,s,i) \quad \text{total economic benefits by province} \\
tot_ben_p & \quad (r,s) \quad \text{total economic benefits} \\
\end{align*}

* land in prodn (1000 hectares)

\[
l_{\text{land_v_p}}(r,s,i,k) = \text{hectares_v_l}(r,s,i,k) + \text{eps}; \\
\]

* water (1000 hectare meters)

\[
l_{\text{tot_use_p}}(r,s,i,k) = \text{Uses_crop_v_l}(r,s,i,k) + \text{eps}; \\
l_{\text{uses_p}}(r,s,i) = \text{Uses_v_l}(r,s,i) + \text{eps}; \\
\]

* economic benefits ($1000 US)

\[
l_{\text{ben_by_crop_canal_p}}(r,s,i,k) = \text{Ag_ben_k_v_l}(r,s,i,k) + \text{eps}; \\
l_{\text{ben_by_canal_p}}(r,s,i) = \text{sum}(k, \text{ag_ben_k_v_l}(r,s,i,k)) + \text{eps}; \\
l_{\text{tot_ben_p}}(r,s) = \text{ag_ben_v_l}(r,s) + \text{eps}; \\
\]

* GAMS GDX facility writes to external spreadsheet
execute_unload "farm_mgmt_06.gdx"

execute 'gdxxrw.exe @gdxxrwout.txt trace=2';

// THE END